

The Pol Spatial

Quantifing Errors Associated with Satellite-Derived Data Sets A feeble attempt to initiate a discussion with NASA Science Teams

Peter Cornillon

University of Rhode Island

New Orleans
Earth Science Data System Working Groups'
joint meeting

20 October 2009

Outline

Peter Cornillor

Spatial Fidelity

1 The Poll

Spatial Fidelity

Outline

Peter Cornillor

The Poll

1 The Poll

Spatial Fidelity

Introduction

The Poll

• 17 August Product Quality Metrics Telecon I suggested

- Including the quality of spatial information as a fundamental data set metric
 Gathering information from NASA Science teams about their

- 17 August Product Quality Metrics Telecon I suggested
 - Including the quality of spatial information as a fundamental data set metric
 Gathering information from NASA Science teams about their
 - Gathering information from NASA Science teams about their plans/approaches to quality metrics
 - Rama asked if I would coordinate this.
 - I solicited input from the MPARWG e-mail list via Rama

Introduction

The Poll

- 17 August Product Quality Metrics Telecon I suggested

 - Including the quality of spatial information as a fundamental data set metric
 Gathering information from NASA Science teams about their plans/approaches to quality metrics
 - Rama asked if I would coordinate this.
 - I solicited input from the MPARWG e-mail list via Rama

- 17 August Product Quality Metrics Telecon I suggested

 - Including the quality of spatial information as a fundamental data set metric
 Gathering information from NASA Science teams about their plans/approaches to quality metrics
 - Rama asked if I would coordinate this.
 - I solicited input from the MPARWG e-mail list via Rama

- 17 August Product Quality Metrics Telecon I suggested
 - Including the quality of spatial information as a fundamental data set metric
 Gathering information from NASA Science teams about their
 - plans/approaches to quality metrics
 - Rama asked if I would coordinate this.
 - I solicited input from the MPARWG e-mail list via Rama

- Gregory Leptoukh (GSFC-DAAC NASA)
- Jay Herman (JCET University of Maryland)
- Lucien Froideveaux (Microwave Limb Sounder JPL NASA)
- Bob Evans (University of Miami)

- Gregory Leptoukh (GSFC-DAAC NASA)
- Jay Herman (JCET University of Maryland)
- Lucien Froideveaux (Microwave Limb Sounder JPL NASA)
- Bob Evans (University of Miami)

- Gregory Leptoukh (GSFC-DAAC NASA)
- Jay Herman (JCET University of Maryland)
- Lucien Froideveaux (Microwave Limb Sounder JPL NASA)
- Bob Evans (University of Miami)

- Gregory Leptoukh (GSFC-DAAC NASA)
- Jay Herman (JCET University of Maryland)
- Lucien Froideveaux (Microwave Limb Sounder JPL NASA)
- Bob Evans (University of Miami)

Gregory Leptoukh

- A plenary on data quality and uncertainty was held at summer ESIP Federation meeting
- An ESIP cluster on data quality and uncertainty has been formed.

Gregory Leptoukh

- A plenary on data quality and uncertainty was held at summer ESIP Federation meeting
- An ESIP cluster on data quality and uncertainty has been formed.

- Reflectivity data set
 - Merging 10 to 11 satellites
 - 31 years
- Measuring reflectivity back to space.
- No ground-based data for validation.
- Two approaches to validation and error estimates.
 - Compare ground irradiance estimated from reflected energy reaching space with ground-based irradiance measurements.
 - Consider the precision of the data rather than their accuracy.
 - Based on initial laboratory calibration of the satellite instrument
 - Resident and resident and

4 D > 4 D >

- Reflectivity data set
 - Merging 10 to 11 satellites
 - 31 years
- Measuring reflectivity back to space.
- No ground-based data for validation.
- Two approaches to validation and error estimates.
 - Compare ground irradiance estimated from reflected energy reaching space with ground-based irradiance measurements.
 - Consider the precision of the data rather than their accuracy.
 - 2 Based on initial laboratory calibration of the satellite instrument
 - Resistant supplies a set of the set of

4日 > 4周 > 4目 > 4目 > 目 めなの

- Reflectivity data set
 - Merging 10 to 11 satellites
 - 31 years
- Measuring reflectivity back to space.
- No ground-based data for validation.
- Two approaches to validation and error estimates.
 - Compare ground irradiance estimated from reflected energy reaching space with ground-based irradiance measurements.
 - Consider the precision of the data rather than their accuracy.
 - Based on iritial laboratory calibration of the satellite instruments
 - Professor and accompanies and the state

- Reflectivity data set
 - Merging 10 to 11 satellites
 - 31 years
- Measuring reflectivity back to space.
- No ground-based data for validation.
- Two approaches to validation and error estimates.
 - Compare ground irradiance estimated from reflected energy reaching space with ground-based irradiance measurements.
 - Consider the precision of the data rather than their accuracy.
 - Based on initial laboratory calibration of the satellite

4日 → 4周 → 4 目 → 4 目 → 9 Q P

- Reflectivity data set
 - Merging 10 to 11 satellites
 - 31 years
- Measuring reflectivity back to space.
- No ground-based data for validation.
- Two approaches to validation and error estimates.
 - Compare ground irradiance estimated from reflected energy
 - space with ground-based irradiance measurements.
 - Consider the precision of the data rather than their accuracy.

Reflectivity data set

- Merging 10 to 11 satellites
- 31 years
- Measuring reflectivity back to space.
- No ground-based data for validation.
- Two approaches to validation and error estimates.
 - Compare ground irradiance estimated from reflected energy reaching space with ground-based irradiance measurements.
 - Consider the precision of the data rather than their accuracy.
 - From ice reflectivity measurements in flight.
 - a Dariada of avarlanning actallita data

- Reflectivity data set
 - Merging 10 to 11 satellites
 - 31 years
- Measuring reflectivity back to space.
- No ground-based data for validation.
- Two approaches to validation and error estimates.
 - Compare ground irradiance estimated from reflected energy reaching space with ground-based irradiance measurements.
 - Consider the precision of the data rather than their accuracy.

Reflectivity data set

- Merging 10 to 11 satellites
- 31 years
- Measuring reflectivity back to space.
- No ground-based data for validation.
- Two approaches to validation and error estimates.
 - Compare ground irradiance estimated from reflected energy reaching space with ground-based irradiance measurements.
 - Consider the precision of the data rather than their accuracy.
 - Based on initial laboratory calibration of the satellite instrument
 - From ice reflectivity measurements in flight.
 - Periods of overlapping satellite data.

- Reflectivity data set
 - Merging 10 to 11 satellites
 - 31 years
- Measuring reflectivity back to space.
- No ground-based data for validation.
- Two approaches to validation and error estimates.
 - Compare ground irradiance estimated from reflected energy reaching space with ground-based irradiance measurements.
 - Consider the precision of the data rather than their accuracy.
 - Based on initial laboratory calibration of the satellite instrument
 - From ice reflectivity measurements in flight.
 - Periods of overlapping satellite data.

- Reflectivity data set
 - Merging 10 to 11 satellites
 - 31 years
- Measuring reflectivity back to space.
- No ground-based data for validation.
- Two approaches to validation and error estimates.
 - Compare ground irradiance estimated from reflected energy reaching space with ground-based irradiance measurements.
 - Consider the precision of the data rather than their accuracy.
 - Based on initial laboratory calibration of the satellite instrument
 - · From ice reflectivity measurements in flight.
 - Periods of overlapping satellite data.

- Reflectivity data set
 - Merging 10 to 11 satellites
 - 31 years
- Measuring reflectivity back to space.
- No ground-based data for validation.
- Two approaches to validation and error estimates.
 - Compare ground irradiance estimated from reflected energy reaching space with ground-based irradiance measurements.
 - Consider the precision of the data rather than their accuracy.
 - Based on initial laboratory calibration of the satellite instrument
 - From ice reflectivity measurements in flight.
 - Periods of overlapping satellite data.

With regard to the telecon, Lucien suggested

- We identify a minimum list of criteria for data quality on which we all agree.
 - If too long of a list, people will not provide the metrics
- Focus on one example first and then see how it can be generalized.
- Values without error bars are almost meaningless.
 - It is doubtful that a product without error bars can be classified as "high quality"
- Error bars in atmospheric composition tend to come as:
 - Precisions on individual profile
 - Accuracy estimates based on error characterization studies

- With regard to the telecon, Lucien suggested
 - We identify a minimum list of criteria for data quality on which we all agree.
 - If too long of a list, people will not provide the metrics
- Focus on one example first and then see how it can be generalized.
- Values without error bars are almost meaningless.
 - It is doubtful that a product without error bars can be classified as "high quality"
- Error bars in atmospheric composition tend to come as:
 - Precisions on individual pre
 - Accuracy estimates based on error characterization studies

- With regard to the telecon, Lucien suggested
 - We identify a minimum list of criteria for data quality on which we all agree.
 - If too long of a list, people will not provide the metrics
- Focus on one example first and then see how it can be generalized.
- Values without error bars are almost meaningless.
 - It is doubtful that a product without error bars can be classified as "high quality"
- Error bars in atmospheric composition tend to come as:
 - Precisions on individual pr
 - Accuracy estimates based on error characterization studies

- With regard to the telecon, Lucien suggested
 - We identify a minimum list of criteria for data quality on which we all agree.
 - If too long of a list, people will not provide the metrics
- Focus on one example first and then see how it can be generalized.
- Values without error bars are almost meaningless.
 - It is doubtful that a product without error bars can be classified as "high quality"
- Error bars in atmospheric composition tend to come as:
 - Accuracy estimates based on error characterization studies

- With regard to the telecon, Lucien suggested
 - We identify a minimum list of criteria for data quality on which we all agree.
 - If too long of a list, people will not provide the metrics
- Focus on one example first and then see how it can be generalized.
- Values without error bars are almost meaningless.
 - It is doubtful that a product without error bars can be classified as "high quality"
- Error bars in atmospheric composition tend to come as:
 - Accuracy estimates based on error characterization studies

- With regard to the telecon, Lucien suggested
 - We identify a minimum list of criteria for data quality on which we all agree.
 - If too long of a list, people will not provide the metrics
- Focus on one example first and then see how it can be generalized.
- Values without error bars are almost meaningless.
 - It is doubtful that a product without error bars can be classified as "high quality"
- Error bars in atmospheric composition tend to come as:
 - Accuracy estimates based on error characterization studies

With regard to the telecon, Lucien suggested

- We identify a minimum list of criteria for data quality on which we all agree.
 - If too long of a list, people will not provide the metrics
- Focus on one example first and then see how it can be generalized.
- Values without error bars are almost meaningless.
 - It is doubtful that a product without error bars can be classified as "high quality"
- Error bars in atmospheric composition tend to come as:
 - Precisions on individual profiles
 - Accuracy estimates based on error characterization studies

- With regard to the telecon, Lucien suggested
 - We identify a minimum list of criteria for data quality on which we all agree.
 - If too long of a list, people will not provide the metrics
- Focus on one example first and then see how it can be generalized.
- Values without error bars are almost meaningless.
 - It is doubtful that a product without error bars can be classified as "high quality"
- Error bars in atmospheric composition tend to come as:
 - Precisions on individual profiles
 - Accuracy estimates based on error characterization studies

- With regard to the telecon, Lucien suggested
 - We identify a minimum list of criteria for data quality on which we all agree.
 - If too long of a list, people will not provide the metrics
- Focus on one example first and then see how it can be generalized.
- Values without error bars are almost meaningless.
 - It is doubtful that a product without error bars can be classified as "high quality"
- Error bars in atmospheric composition tend to come as:
 - Precisions on individual profiles
 - Accuracy estimates based on error characterization studies

- Although SST is the most completely sampled parameter of the Earth system, there are regions that are undersampled
 - Poleward of 60°
 - Upwelling zones (thinking IR here)
 - Areas with confounding atmospheric situations dust, aerosols
- UMiami uses two approaches to estimate SST uncertainty
 - Uncertainty Hypercube
 - Seeson

 - Zenih anale
 - Brightness Jernoerature difference
 - Retrieved satellite SS1 quality level
 - Dey/night
 - This unsersamp hypervakon among saria sanggiran espiration (if SST linear sanital) objects viring considerate
 closes viring considerate.
 - 4 My fact is consist to proceed the control of the
 - Compare satellite SST fields
 - No one like to the substitution of the su

- UMiami focus is on the quality of global satellite-derived SST fields
 - Although SST is the most completely sampled parameter of the Earth system, there are regions that are undersampled
 - Poleward of 60°
 - Upwelling zones (thinking IR here)
 - Areas with confounding atmospheric situations dust, aerosols
- UMiami uses two approaches to estimate SST uncertainty

Compare satellite SST fields

- UMiami focus is on the quality of global satellite-derived SST fields
 - Although SST is the most completely sampled parameter of the Earth system, there are regions that are undersampled
 - Poleward of 60°
 - Upwelling zones (thinking IR here)
 - Areas with confounding atmospheric situations dust, aerosols
- UMiami uses two approaches to estimate SST uncertainty

Compare satellite 551 fields

- UMiami focus is on the quality of global satellite-derived SST fields
 - Although SST is the most completely sampled parameter of the Earth system, there are regions that are undersampled
 - Poleward of 60°
 - Upwelling zones (thinking IR here)
 Areas with confounding atmospheric situations dust, aerosols
- UMiami uses two approaches to estimate SST uncertainty

- UMiami focus is on the quality of global satellite-derived SST fields
 - Although SST is the most completely sampled parameter of the Earth system, there are regions that are undersampled
 - Poleward of 60°
 - Upwelling zones (thinking IR here)
 - Areas with confounding atmospheric situations dust, aerosols
- UMiami uses two approaches to estimate SST uncertainty

- UMiami focus is on the quality of global satellite-derived SST fields
 - Although SST is the most completely sampled parameter of the Earth system, there are regions that are undersampled
 - Poleward of 60°
 - Upwelling zones (thinking IR here)
 - Areas with confounding atmospheric situations dust, aerosols
- UMiami uses two approaches to estimate SST uncertainty
 - Uncertainty Hypercube
 - Season
 - Surface temperature
 - Zonith angle
 - Brightness temperature difference
 - Retrieved satellite SST quality level
 - Day/night
 - The uncertainty hypercube allows for a statistical estimate of SST under simila observing conditions.
 - It is not a direct measure of uncertainty associated with the SST of a given pixe
 As the analysis includes more parameters, the number of in situ obs becomes
 - As the analysis includes more parameters, the number of in situ obs becomes limiting
 - Compare satellite SST fields
 - By combining anomalies resulting from the ensemble of references, a more

- UMiami focus is on the quality of global satellite-derived SST fields
 - Although SST is the most completely sampled parameter of the Earth system, there are regions that are undersampled
 - Poleward of 60°
 - Upwelling zones (thinking IR here)
 - Areas with confounding atmospheric situations dust, aerosols
- UMiami uses two approaches to estimate SST uncertainty
 - Uncertainty Hypercube
 - Uncertainty determined by partitioning match-up into a 7 dimensional space
 - Season
 - Latitude band
 - Surface temperature
 - Zenith angle
 - Brightness temperature difference
 - Retrieved satellite SST quality level
 - Day/night.
 - The uncertainty hypercube allows for a statistical estimate of SST under similar observing conditions.
 - It is not a direct measure of uncertainty associated with the SST of a given pixel.
 - As the analysis includes more parameters, the number of in situ obs becomes limiting.
 - Compare satellite SST fields
 - By combining anomalies resulting from the ensemble of references, a more

- UMiami focus is on the quality of global satellite-derived SST fields
 - Although SST is the most completely sampled parameter of the Earth system, there are regions that are undersampled
 - Poleward of 60°
 - Upwelling zones (thinking IR here)
 - Areas with confounding atmospheric situations dust, aerosols
- UMiami uses two approaches to estimate SST uncertainty
 - Uncertainty Hypercube
 - Uncertainty determined by partitioning match-up into a 7 dimensional space
 - Season
 - Latitude band
 - Surface temperature
 - Zenith angle
 - Brightness temperature difference
 - Retrieved satellite SST quality level
 - Day/night.
 - The uncertainty hypercube allows for a statistical estimate of SST under similar observing conditions.
 - It is not a direct measure of uncertainty associated with the SST of a given pixel.
 - As the analysis includes more parameters, the number of in situ obs becomes limiting.
 - Compare satellite SST fields
 - No one field or in situ measurement provides an absolute standard of references.
 By combining anomalies resulting from the ensemble of references, a more.
 - By combining anomalies resulting from the ensemble of references, a more complete picture of the distribution of uncortainty emerges.

- UMiami focus is on the quality of global satellite-derived SST fields
 - Although SST is the most completely sampled parameter of the Earth system, there are regions that are undersampled
 - Poleward of 60°
 - Upwelling zones (thinking IR here)
 - Areas with confounding atmospheric situations dust, aerosols
- UMiami uses two approaches to estimate SST uncertainty
 - Uncertainty Hypercube
 - Uncertainty determined by partitioning match-up into a 7 dimensional space
 - Season
 - Latitude band
 - Surface temperature
 - Zenith angle
 - Brightness temperature difference
 - Retrieved satellite SST quality level
 - Day/night.
 - The uncertainty hypercube allows for a statistical estimate of SST under similar observing conditions.
 - It is not a direct measure of uncertainty associated with the SST of a given pixel.
 - As the analysis includes more parameters, the number of in situ obs becomes limiting.
 - Compare satellite SST fields
 - No one field or in situ measurement provides an absolute standard of references.
 Ry combining anomalies resulting from the ensemble of references, a more.
 - By combining anomalies resulting from the ensemble of references, a more complete picture of the distribution of uncertainty emerges.

- UMiami focus is on the quality of global satellite-derived SST fields
 - Although SST is the most completely sampled parameter of the Earth system, there are regions that are undersampled
 - Poleward of 60°
 - Upwelling zones (thinking IR here)
 - Areas with confounding atmospheric situations dust, aerosols
- UMiami uses two approaches to estimate SST uncertainty
 - Uncertainty Hypercube
 - Uncertainty determined by partitioning match-up into a 7 dimensional space
 - Season
 - Latitude band
 - Surface temperature
 - Zenith angle
 - Brightness temperature difference
 - Retrieved satellite SST quality level
 - Day/night.
 - The uncertainty hypercube allows for a statistical estimate of SST under similar observing conditions.
 - It is not a direct measure of uncertainty associated with the SST of a given pixel.
 - As the analysis includes more parameters, the number of in situ obs becomes limiting.
 - Compare satellite SST fields
 - No one field or in situ measurement provides an absolute standard of reference
 By combining anomalies resulting from the ensemble of references, a more

- UMiami focus is on the quality of global satellite-derived SST fields
 - Although SST is the most completely sampled parameter of the Earth system, there are regions that are undersampled
 - Poleward of 60°
 - Upwelling zones (thinking IR here)
 - Areas with confounding atmospheric situations dust, aerosols
- UMiami uses two approaches to estimate SST uncertainty
 - Uncertainty Hypercube
 - Uncertainty determined by partitioning match-up into a 7 dimensional space
 - Season
 - Latitude band
 - Surface temperature
 - Zenith angle
 - Brightness temperature difference
 - Retrieved satellite SST quality level
 - Day/night.
 - The uncertainty hypercube allows for a statistical estimate of SST under similar observing conditions.
 - It is not a direct measure of uncertainty associated with the SST of a given pixel.
 - As the analysis includes more parameters, the number of in situ obs becomes limiting.
 - Compare satellite SST fields
 - No one field or in situ measurement provides an absolute standard of reference
 By combining anomalies resulting from the ensemble of references, a more

- UMiami focus is on the quality of global satellite-derived SST fields
 - Although SST is the most completely sampled parameter of the Earth system, there are regions that are undersampled
 - Poleward of 60°
 - Upwelling zones (thinking IR here)
 - Areas with confounding atmospheric situations dust, aerosols
- UMiami uses two approaches to estimate SST uncertainty
 - Uncertainty Hypercube
 - Uncertainty determined by partitioning match-up into a 7 dimensional space
 - Season
 - Latitude band
 - Surface temperature
 - Zenith angle
 - Brightness temperature difference
 - Retrieved satellite SST quality level
 - Day/night.
 - The uncertainty hypercube allows for a statistical estimate of SST under similar observing conditions.
 - It is not a direct measure of uncertainty associated with the SST of a given pixel.
 - As the analysis includes more parameters, the number of in situ obs becomes limiting.
 - Compare satellite SST fields
 - No one field or in situ measurement provides an absolute standard of reference
 - By combining anomalies resulting from the ensemble of references, a more complete picture of the distribution of uncertainty emerges.

- UMiami focus is on the quality of global satellite-derived SST fields
 - Although SST is the most completely sampled parameter of the Earth system, there are regions that are undersampled
 - Poleward of 60°
 - Upwelling zones (thinking IR here)
 - Areas with confounding atmospheric situations dust, aerosols
- UMiami uses two approaches to estimate SST uncertainty
 - Uncertainty Hypercube
 - Uncertainty determined by partitioning match-up into a 7 dimensional space
 - Season
 - Latitude band
 - Surface temperature
 - Zenith angle
 - Brightness temperature difference
 - Retrieved satellite SST quality level
 - Day/night.
 - The uncertainty hypercube allows for a statistical estimate of SST under similar observing conditions.
 - It is not a direct measure of uncertainty associated with the SST of a given pixel.
 - As the analysis includes more parameters, the number of in situ obs becomes limiting.
 - Compare satellite SST fields
 - No one field or in situ measurement provides an absolute standard of reference
 - By combining anomalies resulting from the ensemble of references, a more complete picture of the distribution of uncertainty emerges.

- UMiami focus is on the quality of global satellite-derived SST fields
 - Although SST is the most completely sampled parameter of the Earth system, there are regions that are undersampled
 - Poleward of 60°
 - Upwelling zones (thinking IR here)
 - Areas with confounding atmospheric situations dust, aerosols
- UMiami uses two approaches to estimate SST uncertainty
 - Uncertainty Hypercube
 - Uncertainty determined by partitioning match-up into a 7 dimensional space
 - Season
 - Latitude band
 - Surface temperature
 - Zenith angle
 - Brightness temperature difference
 - Retrieved satellite SST quality level
 - Day/night.
 - The uncertainty hypercube allows for a statistical estimate of SST under similar observing conditions.
 - It is not a direct measure of uncertainty associated with the SST of a given pixel.
 - As the analysis includes more parameters, the number of in situ obs becomes limiting.
 - Compare satellite SST fields
 - No one field or in situ measurement provides an absolute standard of reference
 - By combining anomalies resulting from the ensemble of references, a more complete picture of the distribution of uncertainty emerges.

Outline

Peter Cornillor

The Pol Spatial Fidelity

1 The Poll

Spatial Fidelity

Background

Peter Cornillon

The Poll Spatial Fidelity

- NASA has formed an SST Science Teaming
- A pre-SSTST workshop was held in Rhode Island in November 2009
 - Workshop objective was to characterize the SST error budget
 - An SST error budget white paper was produced following the workshop: http://www.ssterrorbudget.org/ISSTST/White_Paper.html

- NASA has formed an SST Science Teaming
- A pre-SSTST workshop was held in Rhode Island in November 2009
 - Workshop objective was to characterize the SST error budget
 - An SST error budget white paper was produced following the workshop: http://www.ssterrorbudget.org/ISSTST/White_Paper.html

- NASA has formed an SST Science Teaming
- A pre-SSTST workshop was held in Rhode Island in November 2009
 - Workshop objective was to characterize the SST error budget
 - An SST error budget white paper was produced following the workshop: http://www.ssterrorbudget.org/ISSTST/White_Paper.html

Background

Peter Cornillor

The Poll

Spatial Fidelity

- NASA has formed an SST Science Teaming
- A pre-SSTST workshop was held in Rhode Island in November 2009
 - Workshop objective was to characterize the SST error budget
 - An SST error budget white paper was produced following the workshop: http://www.ssterrorbudget.org/ISSTST/White_Paper.html

A set of SST requirements was developed at the workshop: Requirements previously identified.

- Those identified by workshop participants

Application	Source	Spatial resolution (km)	Temporal resolution (hrs)	Geolocation accuracy (km)	Absolute accuracy (K)	Relative accuracy
CDR	Ohring et al., 2005				0.1	0.04°K/decade
CDR	Appendix II					0.05°K/decade
NWP	Eyre et al., 2009	5	3		0.3	
Global Operations	NPOESS IORD-II	0.25	3	0.1	0.1	0.05°K
Coastal/Lake Operations	NPOESS IORD-II	0.1	6	0.1	0.1	
Fronts	Appendix II	0.1	0.25	0.1	1	0.1°K
Climate Models	Appendix II	25	24	5	0.2	0.05°K/decade
Lakes	Appendix II	1	3	1	0.3	0.2°K
Air-sea fluxes	Appendix II	10	24	2	0.1	
Mesoscale	Appendix II	1	168		0.1	0.1°K
Submesoscale	Appendix II	0.1	24		0.1	0.1°K
Strictest		0.1	0.25	0.1	0.1	0.05°K 0.04°K/decade

- A set of SST requirements was developed at the workshop:
 Requirements previously identified.

 - These tended to focus on model and operational requirements. Those identified by workshop participants

Application	Source	Spatial resolution (km)	Temporal resolution (hrs)	Geolocation accuracy (km)	Absolute accuracy (K)	Relative accuracy
CDR	Ohring et al., 2005				0.1	0.04°K/decade
CDR	Appendix II					0.05°K/decade
NWP	Eyre et al., 2009	5	3		0.3	
Global Operations	NPOESS IORD-II	0.25	3	0.1	0.1	0.05°K
Coastal/Lake Operations	NPOESS IORD-II	0.1	6	0.1	0.1	
Fronts	Appendix II	0.1	0.25	0.1	1	0.1°K
Climate Models	Appendix II	25	24	5	0.2	0.05°K/decade
Lakes	Appendix II	1	3	1	0.3	0.2°K
Air-sea fluxes	Appendix II	10	24	2	0.1	
Mesoscale	Appendix II	1	168		0.1	0.1°K
Submesoscale	Appendix II	0.1	24		0.1	0.1°K
Strictest		0.1	0.25	0.1	0.1	0.05°K 0.04°K/decade

- A set of SST requirements was developed at the workshop:
 Requirements previously identified.
 - - These tended to focus on model and operational requirements.
 - Those identified by workshop participants

Application	Source	Spatial resolution (km)	Temporal resolution (hrs)	Geolocation accuracy (km)	Absolute accuracy (K)	Relative accuracy
CDR	Ohring et al., 2005				0.1	0.04°K/decade
CDR	Appendix II					0.05°K/decade
NWP	Eyre et al., 2009	5	3		0.3	
Global Operations	NPOESS IORD-II	0.25	3	0.1	0.1	0.05°K
Coastal/Lake Operations	NPOESS IORD-II	0.1	6	0.1	0.1	
Fronts	Appendix II	0.1	0.25	0.1	1	0.1°K
Climate Models	Appendix II	25	24	5	0.2	0.05°K/decade
Lakes	Appendix II	1	3	1	0.3	0.2°K
Air-sea fluxes	Appendix II	10	24	2	0.1	
Mesoscale	Appendix II	1	168		0.1	0.1°K
Submesoscale	Appendix II	0.1	24		0.1	0.1°K
Strictest		0.1	0.25	0.1	0.1	0.05°K 0.04°K/decade

SST Requirements

Peter Cornillon

The Poll

Spatial Fidelity

- A set of SST requirements was developed at the workshop:
 - Requirements previously identified.
 - These tended to focus on model and operational requirements.
 - Those identified by workshop participants
 - Represented a significant community not considered in previous work
 - These requirements tended to be more stringent than previous ones

Application	Source	Spatial resolution (km)	Temporal resolution (hrs)	Geolocation accuracy (km)	Absolute accuracy (K)	Relative accuracy
CDR	Ohring et al., 2005				0.1	0.04°K/decade
CDR	Appendix II					0.05°K/decade
NWP	Eyre et al., 2009	5	3		0.3	
Global Operations	NPOESS IORD-II	0.25	3	0.1	0.1	0.05°K
Coastal/Lake Operations	NPOESS IORD-II	0.1	6	0.1	0.1	
Fronts	Appendix II	0.1	0.25	0.1	1	0.1°K
Climate Models	Appendix II	25	24	5	0.2	0.05°K/decade
Lakes	Appendix II	1	3	1	0.3	0.2°K
Air-sea fluxes	Appendix II	10	24	2	0.1	
Mesoscale	Appendix II	1	168		0.1	0.1°K
Submesoscale	Appendix II	0.1	24		0.1	0.1°K
Strictest		0.1	0.25	0.1	0.1	0.05°K 0.04°K/decade

- A set of SST requirements was developed at the workshop:
 - Requirements previously identified.
 - These tended to focus on model and operational requirements.
 - Those identified by workshop participants
 - Represented a significant community not considered in previous work
 - These requirements tended to be more stringent than previous ones.

Application	Source	Spatial resolution (km)	Temporal resolution (hrs)	Geolocation accuracy (km)	Absolute accuracy (K)	Relative accuracy
CDR	Ohring et al., 2005				0.1	0.04°K/decade
CDR	Appendix II					0.05°K/decade
NWP	Eyre et al., 2009	5	3		0.3	
Global Operations	NPOESS IORD-II	0.25	3	0.1	0.1	0.05°K
Coastal/Lake Operations	NPOESS IORD-II	0.1	6	0.1	0.1	
Fronts	Appendix II	0.1	0.25	0.1	1	0.1°K
Climate Models	Appendix II	25	24	5	0.2	0.05°K/decade
Lakes	Appendix II	1	3	1	0.3	0.2°K
Air-sea fluxes	Appendix II	10	24	2	0.1	
Mesoscale	Appendix II	1	168		0.1	0.1°K
Submesoscale	Appendix II	0.1	24		0.1	0.1°K
Strictest		0.1	0.25	0.1	0.1	0.05°K 0.04°K/decade

A set of SST requirements was developed at the workshop:

- Requirements previously identified.
- These tended to focus on model and operational requirements.
- Those identified by workshop participants
 - Represented a significant community not considered in previous work
 - These requirements tended to be more stringent than previous ones.

Application	Source	Spatial resolution (km)	Temporal resolution (hrs)	Geolocation accuracy (km)	Absolute accuracy (K)	Relative accuracy
CDR	Ohring et al., 2005				0.1	0.04°K/decade
CDR	Appendix II					0.05°K/decade
NWP	Eyre et al., 2009	5	3		0.3	
Global Operations	NPOESS IORD-II	0.25	3	0.1	0.1	0.05°K
Coastal/Lake Operations	NPOESS IORD-II	0.1	6	0.1	0.1	
Fronts	Appendix II	0.1	0.25	0.1	1	0.1°K
Climate Models	Appendix II	25	24	5	0.2	0.05°K/decade
Lakes	Appendix II	1	3	1	0.3	0.2°K
Air-sea fluxes	Appendix II	10	24	2	0.1	
Mesoscale	Appendix II	1	168		0.1	0.1°K
Submesoscale	Appendix II	0.1	24		0.1	0.1°K
Strictest		0.1	0.25	0.1	0.1	0.05°K 0.04°K/decade

Feature versus Climate Studies

Peter Cornillon

The Poll

Spatial Fidelity

- Temporally, and
- Spatially.
- However, we rarely evaluate the quality of spatial information in our data products.

- Primary focus of the quality of most satellite-derived products is on 'point' accuracy.
 - The mean and RMS difference of co-located SST_{catallite} SST_{other amount}
- For a number of the applications identified at the SST workshop, spatial information is more important than absolute accuracy.
- The point-to-point (spatial) precision is more important than absolute accuracy.

- Temporally, and
- Spatially.
- However, we rarely evaluate the quality of spatial information in our data products.

- Primary focus of the quality of most satellite-derived products is on 'point' accuracy.
 - The mean and RMS difference of co-located SST_{catallite} SST_{other, product}
- For a number of the applications identifed at the SST workshop, spatial information is more important than absolute accuracy.
- The point-to-point (spatial) precision is more important than absolute accuracy.

- Temporally, and
- Spatially.
- However, we rarely evaluate the quality of spatial information in our data products.

- Primary focus of the quality of most satellite-derived products is on 'point' accuracy.
 - The mean and RMS difference of co-located $SST_{catallite} SST_{other_product}$
- For a number of the applications identifed at the SST workshop, spatial information is more important than absolute accuracy.
- The point-to-point (spatial) precision is more important than absolute accuracy.

- Temporally, and
- Spatially.
- However, we rarely evaluate the quality of spatial information in our data products.

- Primary focus of the quality of most satellite-derived products is on 'point' accuracy.
 - The mean and RMS difference of co-located SST_{estallite} SST_{ather, conduct}
- For a number of the applications identifed at the SST workshop, spatial information is more important than absolute accuracy.
- The point-to-point (spatial) precision is more important than absolute accuracy.

- Temporally, and
- Spatially.
- However, we rarely evaluate the quality of spatial information in our data products.

- Primary focus of the quality of most satellite-derived products is on 'point' accuracy.
 - The mean and RMS difference of co-located $SST_{satellite} SST_{other product}$
- For a number of the applications identifed at the SST workshop, spatial information is more important than absolute accuracy.
- The point-to-point (spatial) precision is more important than absolute accuracy.

- Temporally, and
- Spatially.
- However, we rarely evaluate the quality of spatial information in our data products.

- Primary focus of the quality of most satellite-derived products is on 'point' accuracy.
 - The mean and RMS difference of SST_{satellite} SST_{in situ}
 - The mean and RMS difference of co-located SST_{satellite} SST_{other_product}
- For a number of the applications identifed at the SST workshop, spatial information is more important than absolute accuracy.
- The point-to-point (spatial) precision is more important than absolute accuracy.

- Temporally, and
- Spatially.
- However, we rarely evaluate the quality of spatial information in our data products.

- Primary focus of the quality of most satellite-derived products is on 'point' accuracy.
 - The mean and RMS difference of SST_{satellite} SST_{in_situ}
 - The mean and RMS difference of co-located $SST_{satellite} SST_{other_product}$
- For a number of the applications identifed at the SST workshop, spatial information is more important than absolute accuracy.
- The point-to-point (spatial) precision is more important than absolute accuracy.

- Temporally, and
- Spatially.
- However, we rarely evaluate the quality of spatial information in our data products.

- Primary focus of the quality of most satellite-derived products is on 'point' accuracy.
 - The mean and RMS difference of SST_{satellite} SST_{in_situ}
 - ullet The mean and RMS difference of co-located $SST_{satellite}-SST_{other_product}$
- For a number of the applications identifed at the SST workshop, spatial information is more important than absolute accuracy.
- The point-to-point (spatial) precision is more important than absolute accuracy.

- Temporally, and
- Spatially.
- However, we rarely evaluate the quality of spatial information in our data products.

- Primary focus of the quality of most satellite-derived products is on 'point' accuracy.
 - The mean and RMS difference of SST_{satellite} SST_{in_situ}
 - The mean and RMS difference of co-located $SST_{satellite} SST_{other_product}$
- For a number of the applications identifed at the SST workshop, spatial information is more important than absolute accuracy.
- The point-to-point (spatial) precision is more important than absolute accuracy.

- Temporally, and
- Spatially.
- However, we rarely evaluate the quality of spatial information in our data products.

- Primary focus of the quality of most satellite-derived products is on 'point' accuracy.
 - The mean and RMS difference of SST_{satellite} − SST_{in_situ}
 - ullet The mean and RMS difference of co-located $SST_{satellite}-SST_{other_product}$
- For a number of the applications identifed at the SST workshop, spatial information is more important than absolute accuracy.
- The point-to-point (spatial) precision is more important than absolute accuracy.

Conclusion from SST Error Budget Whitepaper

Peter Cornillor

The Po

Spatial Fidelity

New requirements point to the need for a measure of the spatial fidelity of SST products.

Accurate and Precise

Peter Cornillon

The Pol Spatial Fidelity

Small scatter, no bias

Accurate and Precise

Peter Cornillon

The Pol Spatial Fidelity

Small scatter, no bias

Accurate and Imprecise

Peter Cornillon

The Poll Spatial Fidelity $SST_{Satellite}$ - SST_{in_situ}

Large scatter, no bias

Accurate and Imprecise

Peter

The Poll Spatial Fidelity $SST_{Satellite}$ - SST_{in_situ}

Large scatter, no bias

Inaccurate and Precise

Peter Cornillon

The Pol Spatial Fidelity

Small scatter, large bias

Inaccurate and Precise

Peter Cornillon

The Pol Spatial Fidelity

Small scatter, large bias

Inaccurate and Imprecise

Peter Cornillon

The Poll Spatial Fidelity

Large scatter, large bias

Inaccurate and Imprecise

Peter

The Pol Spatial Fidelity

Large scatter, large bias

Conclusion from SST Error Budget Whitepaper

The Pol Spatial Fidelity

That was cool.

Now let's look at these distributions in the context of the point-to-point (spatial) difference in an SST field.

Conclusion from SST Error Budget Whitepaper

The Po

Spatial Fidelity

That was cool.

Now let's look at these distributions in the context of the point-to-point (spatial) difference in an SST field.

Accurate and Precise; Small Point-to-Point

Peter

The Poll Spatial Fidelity

Small scatter, no bias when compared with in situ observations and small point-to-point variability

Accurate and Precise; Small Point-to-Point

Peter Cornillon

The Poll
Spatial
Fidelity

Small scatter, no bias when compared with in situ observations and small point-to-point variability

Accurate and Imprecise; Small Point-to-Point

Peter

The Poll Spatial Fidelity

Large scatter, no bias when compared with in situ observations and small point-to-point variability

Accurate and Imprecise; Small Point-to-Point

Peter Cornillon

The Poll Spatial Fidelity

Large scatter, no bias when compared with in situ observations and small point-to-point variability

Accurate and Imprecise; Large Point-to-Point

Peter Cornillon

The Poll Spatial Fidelity

Large scatter, no bias when compared with in situ observations and large point-to-point variability

Accurate and Imprecise; Large Point-to-Point

Peter

The Poll Spatial Fidelity $\frac{\text{SST}_{\text{Satellite}} - \text{SST}_{\text{in_situ}}}{\text{SST(i, j)}_{\text{Satellite}} - \text{SST(i+1, j)}_{\text{Satellite}}}$

Large scatter, no bias when compared with in situ observations and large point-to-point variability

Inaccurate and Precise; Small Point-to-Point

Peter Cornillon

The Pol Spatial Fidelity

Small scatter, large bias when compared with in situ observations and small point-to-point variability

Inaccurate and Precise; Small Point-to-Point

Peter Cornillon

The Pol Spatial Fidelity

Small scatter, large bias when compared with in situ observations and small point-to-point variability

Temperature

Inaccurate and Imrecise; Small Point-to-Point

Peter Cornillon

The Pol Spatial Fidelity

Large scatter, large bias when compared with in situ observations and small point-to-point variability

Inaccurate and Imrecise; Small Point-to-Point

Peter Cornillon

The Pol Spatial Fidelity

Large scatter, large bias when compared with in situ observations and small point-to-point variability

Inaccurate and Imrecise; Large Point-to-Point

Peter Cornillon

The Pol Spatial Fidelity

Large scatter, large bias when compared with in situ observations and large point-to-point variability

Inaccurate and Imrecise; Large Point-to-Point

Peter Cornillon

The Poll Spatial Fidelity

Large scatter, large bias when compared with in situ observations and large point-to-point variability

All Together Now

Peter

The Pol

Spatial Fidelity

All Together - Climate Studies

Peter

The Poll

Spatial Fidelity

All Together - Feature Studies

Peter

The Poll

Spatial Fidelity

- Comparison 1: For the western North Atlantic
 - The data sets
 - MODIS 4km global for 2008
 - AVHRR Pathfinder v5 4km global for 2008
 - The statistic
 - The standard deviation for each 3x3 pixel tile in each image

- Comparison 1: For the western North Atlantic
 - The data sets
 - MODIS 4km global for 2008
 - AVHRR Pathfinder v5 4km global for 2008
 - The statistic
 - The standard deviation for each 3x3 pixel tile in each image

- Comparison 1: For the western North Atlantic
 - The data sets
 - MODIS 4km global for 2008
 - AVHRR Pathfinder v5 4km global for 2008
 - The statistic

The standard deviation for each 3x3 pixel tile in each image

- Comparison 1: For the western North Atlantic
 - The data sets
 - MODIS 4km global for 2008
 - AVHRR Pathfinder v5 4km global for 2008
 - The statistic

The standard deviation for each 3x3 pixel tile in each image

- Comparison 1: For the western North Atlantic
 - The data sets
 - MODIS 4km global for 2008
 - AVHRR Pathfinder v5 4km global for 2008
 - The statistic
 - The standard deviation for each 3x3 pixel tile in each image.

- Comparison 1: For the western North Atlantic
 - The data sets
 - MODIS 4km global for 2008
 - AVHRR Pathfinder v5 4km global for 2008
 - The statistic
 - The standard deviation for each 3x3 pixel tile in each image.

Standard Deviation on 3x3 Tiles

Peter Cornillon

Spatial Fidelity

Standard Deviation on 3x3 Tiles

Peter Cornillon

The Poll Spatial Fidelity

And

- Comparison 2: For the world ocean
 - The data sets
 - Level 2 AMSR-E from RSS oversampled to 10km resolution (middle 160 pixels on each scan line).
 - Level 3 AMSR-E from RSS obtained from L2 and reprojected to a 25km resolution map
 - The statistic
 - The Sobel gradient magnitude

- Comparison 2: For the world ocean
 - The data sets
 - Level 2 AMSR-E from RSS oversampled to 10km resolution (middle 160 pixels on each scan line).
 - Level 3 AMSR-E from RSS obtained from L2 and reprojected to a 25km resolution map.
 - The statistic
 - The Sobel gradient magnitude

- Comparison 2: For the world ocean
 - The data sets
 - Level 2 AMSR-E from RSS oversampled to 10km resolution (middle 160 pixels on each scan line).
 - Level 3 AMSR-E from RSS obtained from L2 and reprojected to a 25km resolution map.
 - The statistic
 - The Sobel gradient magnitude

And

- Comparison 2: For the world ocean
 - The data sets
 - Level 2 AMSR-E from RSS oversampled to 10km resolution (middle 160 pixels on each scan line).
 - Level 3 AMSR-E from RSS obtained from L2 and reprojected to a 25km resolution map.
 - The statistic

- Comparison 2: For the world ocean
 - The data sets
 - Level 2 AMSR-E from RSS oversampled to 10km resolution (middle 160 pixels on each scan line).
 - Level 3 AMSR-E from RSS obtained from L2 and reprojected to a 25km resolution map.
 - The statistic
 - The Sobel gradient magnitude

And

- The data sets
 - Level 2 AMSR-E from RSS oversampled to 10km resolution (middle 160 pixels on each scan line).
 - Level 3 AMSR-E from RSS obtained from L2 and reprojected to a 25km resolution map.
- The statistic
 - The Sobel gradient magnitude

Peter Cornillon

Spatial Fidelity

Seems reasonable

- The L2 product is 10km resolution so allows for larger gradients than 25km L3
- But wait, the L2 product is oversampled from a nominal resolution of 25km.

Peter Cornillon

Spatial Fidelity

Seems reasonable:

- The L2 product is 10km resolution so allows for larger gradients than 25km L3
- But wait, the L2 product is oversampled from a nominal resolution of 25km

Peter Cornillon

The Pol Spatial Fidelity

Seems reasonable:

- The L2 product is 10km resolution so allows for larger gradients than 25km L3
- But wait, the L2 product is oversampled from a nominal resolution of 25km.

Peter Cornillon

The Pol Spatial Fidelity

Seems reasonable:

- The L2 product is 10km resolution so allows for larger gradients than 25km L3
- But wait, the L2 product is oversampled from a nominal resolution of 25km.

- Two similar sensors with similar processing (MODIS/AVHRR)
- Yield quite different results for a statistic related to the spatial variability of the fields.
- Two data sets from the same sensor but in different projections (L2/L3)
- Yield quite different results for a slightly different statistic.

- Two similar sensors with similar processing (MODIS/AVHRR)
- Yield quite different results for a statistic related to the spatial variability of the fields.
- Two data sets from the same sensor but in different projections (L2/L3)
- Yield quite different results for a slightly different statistic.

- Two similar sensors with similar processing (MODIS/AVHRR)
- Yield quite different results for a statistic related to the spatial variability of the fields.
- Two data sets from the same sensor but in different projections (L2/L3)
- Yield quite different results for a slightly different statistic.

- Two similar sensors with similar processing (MODIS/AVHRR)
- Yield quite different results for a statistic related to the spatial variability of the fields.
- Two data sets from the same sensor but in different projections (L2/L3)
- Yield quite different results for a slightly different statistic.

- Two similar sensors with similar processing (MODIS/AVHRR)
- Yield quite different results for a statistic related to the spatial variability of the fields.
- Two data sets from the same sensor but in different projections (L2/L3)
- Yield quite different results for a slightly different statistic.

Consideration needs to be given to metrics related to the fidelity with which a product reproduces the spatial characteristics of the underlying field.

- Two similar sensors with similar processing (MODIS/AVHRR)
- Yield quite different results for a statistic related to the spatial variability of the fields.
- Two data sets from the same sensor but in different projections (L2/L3)
- Yield quite different results for a slightly different statistic.

Consideration needs to be given to metrics related to the fidelity with which a product reproduces the spatial characteristics of the underlying field.

Recall both J Herman and L Froidevaux brought up the issue of precision.

- Two similar sensors with similar processing (MODIS/AVHRR)
- Yield quite different results for a statistic related to the spatial variability of the fields.
- Two data sets from the same sensor but in different projections (L2/L3)
- Yield quite different results for a slightly different statistic.

Consideration needs to be given to metrics related to the fidelity with which a product reproduces the spatial characteristics of the underlying field.

Recall both J Herman and L Froidevaux brought up the issue of precision.

It seems a shame to spend BILLIONS of \$s on collecting data and then to ignore some of their richness.

Spatial Fidelity

The End